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The flow-induced deformation of an inviscid bubble occupied by a compressible gas
and suspended in an ambient viscous liquid is considered at low Reynolds numbers
with particular reference to the pressure developing inside the bubble. Ambient fluid
motion alters the bubble pressure with respect to that established in the quiescent
state, and requires the bubble to expand or contract according to an assumed equation
of state. When changes in the bubble volume are prohibited by a global constraint
on the total volume of the flow, the ambient pressure is modified while the bubble
pressure remains constant during the deformation. A numerical method is developed
for evaluating the pressure inside a two-dimensional bubble in an ambient Stokes flow
on the basis of the normal component of the interfacial force balance involving the
capillary pressure, the normal viscous stress, and the pressure at the free surface on
the side of the liquid; the last is computed by evaluating a strongly singular integral.
Dynamical simulations of bubble deformation are performed using the boundary
integral method properly implemented to remove the multiplicity of solutions due to
the a priori unknown rate of expansion, and three particular problems are discussed
in detail: the shrinkage of a bubble at a specified rate, the deformation of a bubble
subject to simple shear flow, and the deformation of a bubble subject to a purely
elongational flow. In the case of shrinkage, it is found that the surface tension plays
a critical role in determining the behaviour of the bubble pressure near the critical
time when the bubble disappears. In the case of shear or elongational flow, it is found
that the bubble contracts during an initial period of deformation from the circular
shape, and then it expands to obtain a stationary shape whose area is higher than
that assumed in the quiescent state. Expansion may destabilize the bubble by raising
the capillary number above the critical threshold under which stationary shapes can
be found.

1. Introduction
The expansion, contraction, and collective interactions of bubbles consisting of a

compressible gas and suspended in an ambient liquid have been studied extensively
by previous authors with particular interest in regular and chaotic volume and shape
oscillations, cavitation and collapse near rigid and deformable boundaries, and in
the transport properties of bubbly liquids. Reviews can be found in the articles by
Blake & Gibson (1987), Sangani & Didwania (1993), and Prosperetti (1999). The
motion of the liquid is typically considered at high Reynolds numbers, and the effects
of viscosity are neglected, taken into consideration through a global energy balance
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under the assumption of irrotational fluid motion (Sangani & Didwania 1993), or
included in the formulation by means of a boundary-layer analysis for the vortex
layer developing along the free surface (e.g. Boulton-Stone 1995). An exception occurs
in the case of the radial oscillations of a perfectly spherical bubble where an exact
solution of the equations of viscous flow underlying the generalized Rayleigh–Plesset
equation can be found at any Reynolds number (e.g. Plesset & Prosperetti 1977).

Consider a solitary bubble containing a compressible gas, convected by, and pos-
sibly deforming under, the influence of an ambient viscous flow. The motion of the
liquid causes the bubble pressure to change by an amount that depends on the type
and strength of the ambient flow. In response, the bubble expands or contracts ac-
cording to an equation of state appropriate for the gas occupying the bubble, and
subject to the prevailing thermodynamic conditions requiring, for example, isother-
mal or adiabatic behaviour. Richardson (1968) derived exact solutions describing
infinite shear or purely straining Stokes flow past a deformed two-dimensional bubble
at steady state, and presented analytical expressions for the difference between the
bubble pressure and the liquid pressure at infinity. Miksis (1981) used the boundary
integral formulation to compute the shapes of axisymmetric bubbles in axisymmet-
ric stagnation-point flow, and presented graphs relating the Weber number to the
difference between the bubble pressure and the stagnation pressure occurring at the
bubble surface on the axis of symmetry. The results of Richardson and Miksis, in
conjuction with an assumed equation of state for the gas occupying the bubble, may
be used to compute the volume or area of a deformed bubble and thus the capillary
or Weber number and bubble shape at steady state using an iterative method, as will
be discussed in §§ 5 and 6.

Several authors have used numerical methods based on the stream function–
vorticity formulation to compute steady and unsteady axisymmetric flows past de-
formable inviscid gas bubbles at low and moderate Reynolds numbers (e.g. Ryskin
& Leal 1984; Christov & Volkov 1985; Kang & Leal 1987; Takagi, Prosperetti &
Matsumoto 1994; Yuan & Prosperetti 1994). In the case of steady flow, the bubble
volume was specified and used to define the Reynolds number, Weber number, and
capillary number. In the case of unsteady flow, it was assumed that the bubble vol-
ume is preserved during the motion. In the stream function–vorticity formulation, the
bubble pressure does not need to be computed as part of the solution; instead, it
may be evaluated a posteriori by solving the Poisson equation for the pressure in the
liquid subject to Neumann boundary conditions that arise by projecting the equation
of motion normal to the bubble surface, and then using the normal component of the
interfacial force balance to relate the liquid to the bubble pressure at a chosen point.

Christov & Volkov (1985) considered steady streaming axisymmetric flow past a
deformed bubble, and used the normal component of the interfacial condition for the
traction over the bubble surface, involving the difference between the bubble pressure
and the pressure at infinity, to compute the shape of the free surface by iteration. In
their discussion of the numerical method, they note that the constraint on the bubble
volume may be replaced by an equation of state for the gas occupying the bubble, but
do not explore this possibility. Kang & Leal (1987) incorporated the bubble pressure
into an un-named integration constant which is computed to ensure that the bubble
volume remains constant during the deformation. To this author’s knowledge, the
flow-induced expansion or contraction of a bubble consisting of a compressible gas
in viscous flow at small or moderate Reynolds numbers has not been discussed by
previous authors.

In this paper, we consider the pressure developing inside an inviscid two-dimensional
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Figure 1. Illustration of Stokes flow past a two-dimensional inviscid bubble occupied by a
compressible gas.

compressible bubble as a result of an ambient fluid motion under conditions of Stokes
flow, and discuss the accompanying changes in the bubble volume. The velocity and
pressure at the free surface are computed, respectively, by solving an integral equation
subject to a constraint on the rate of change of the bubble area, and by evaluat-
ing a strongly singular integral representation. Consideration of the analogous and
more realistic problem in three dimensions was prohibited by analytical and numeri-
cal difficulties in evaluating with sufficient accuracy the strongly singular integral
representation for the pressure.

In the numerical method, the solution of the integral equation for the interfacial
velocity is made unique by two alternative methods involving eigenvalue spectrum
deflation or projection, and the strongly singular integral representation for the
pressure is evaluated by reducing the order of the singularity using asymptotic
methods. Numerical simulations of the deformation of a two-dimensional bubble
illustrate the effect of bubble compressibility in three complementary types of flow
discussed by Richardson (1968) and more recently by Tanveer & Vasconcelos (1995):
shrinkage at a specified rate, deformation in shear flow, and deformation in a purely
elongational flow.

2. Problem statement
Consider flow past a two-dimensional bubble suspended in a viscous liquid, as

illustrated in figure 1. The bubble is occupied by a compressible gas whose viscosity
is negligible compared to that of the liquid. The Reynolds number of the flow
Re = ρaU/µ is assumed to be so small that unsteady and nonlinear inertial forces
are negligible, and the motion of the liquid is governed by the linear equations of
Stokes flow; U is the characteristic velocity of the flow, a is the equivalent bubble
radius defined such that the bubble area is πa2, µ and ρ are the viscosity and density
of the liquid. When gravitational forces are negligible, the motion of the liquid is
governed by the equations of Stokes flow, including the continuity equation and the
homogeneous Stokes equation

∇ · u = 0, −∇p+ µ∇2u = 0, (2.1)

where u is the velocity and p is the pressure.
The gas–liquid interface is assumed to be a free surface with uniform surface

tension γ. The hydrodynamic traction along the free surface on the side of the liquid
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is then given by

f ≡ σ · n = (−pB + γκ)n, (2.2)

where σ is the Newtonian stress tensor, n is the unit vector normal to the free surface
pointing into the liquid, pB is the bubble pressure, and κ is the curvature of the free
surface in the (x, y)-plane; for a circular bubble of radius a, κ = 1/a. As required by
definition, the tangential component of the traction vanishes along the free surface.

If the liquid is stationary, the interface is circular, and the bubble pressure pB is
given by the Young–Laplace equation pB = p∞+γκ, where p∞ is the uniform pressure
of the liquid in the vicinity of the bubble. Fluid motion induces variations in the
normal component of the traction exerted on the free surface on the side of the liquid,
and causes the bubble to deform, and also expand or contract, in order to satisfy the
normal free-surface balance

pB = −n · σ · n+ γκ, (2.3)

where the bubble pressure pB is assumed to be known from thermodynamics, as will
be discussed in the next paragraph. In particular, the change in the bubble area AB
is determined by the instantaneous flow rate across the free surface given by

Q =
dAB
dt

=

∫
C

u · n dl, (2.4)

where C is the bubble surface. The flow rate Q is an unknown that must be computed
as part of the solution in order to satisfy the normal force balance (2.3). This
requirement effectively introduces an implicit constraint for determining the rate of
bubble expansion or contraction at any time.

Now, the bubble pressure and area are related by an appropriate equation of state.
For example, in the case of an ideal gas, the product pBAB is equal to nRT , where
n is the number of gram-moles comprising the gas, R is the ideal gas constant, and
T is the absolute temperature. Assuming that the temperature of the bubble remains
constant in time, we differentiate the ideal gas law with respect to time and obtain an
evolution equation for the bubble pressure,

dpB
dt

= − pB
AB
Q. (2.5)

Similar evolution equations can be derived to describe the behaviour of the bubble
pressure under adiabatic instead of isothermal conditions. Appending to equations
(2.1)–(2.3) the evolution law (2.5), we obtain a complete system of equations governing
the fluid motion and the bubble deformation. The system is to be solved subject to an
initial condition that specifies the bubble shape, area, and pressure at the designated
origin of time.

3. Integral formulation and numerical method
To compute the interfacial velocity and thereby track the deformation of the free

surface, we use the boundary-integral formulation for Stokes flow and express the
velocity at a point x0 that is located in the liquid in the integral form

uj(x0) = u∞j (x0)− 1

4πµ

∫
C

fi(x)Gij(x, x0) dl(x)

+
1

4π

∫
C

ui(x)Tijk(x, x0)nk(x) dl(x), (3.1)
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where u∞ is the velocity of a specified incident flow, f ≡ σ · n is the free-surface
traction given in (2.2), and Gij and Tijk are the velocity and stress Green’s functions
of Stokes flow (e.g. Pozrikidis 1992). In the absence of boundaries, these are given by
the free-space forms

Gij(x, x0) = −δij ln r +
x̂ix̂j

r2
, Tijk(x, x0) = −4

x̂ix̂j x̂k

r4
, (3.2a, b)

where x̂ = x− x0 is the distance of the integration point x from the evaluation point
x0, and r = |x̂|.

The pressure is given by the corresponding integral representation

p(x0) = p∞(x0)− 1

4π

∫
C

fi(x)Pi(x0, x) dl(x) +
µ

4π

∫
C

ui(x)Πik(x0, x)nk(x) dl(x), (3.3)

where p∞ is the pressure of the specified incident flow, and the kernels Pi and Πik are
the pressure fields associated with the point force and the stresslet. For flow in free
space,

Pi(x0, x) = −2
∂ ln r

∂x̂i
= −2

x̂i

r2
, (3.4a)

Πik(x0, x) = −4
∂2 ln r

∂x̂i∂x̂k
= −4

δik

r2
+ 8

x̂ix̂k

r4
. (3.4b)

If the flow is bounded by interior or exterior surfaces, the velocity and pressure
Green’s functions and the pressure kernels may be decomposed into the free-space
components given in (3.2) and (3.4), and complementary components that are non-
singular thoughout the domain of flow.

3.1. Integral equation for the velocity

Taking the limit as the point x0 approaches the free surface, and expressing the limit
of the double-layer potential represented by the second integral on the right-hand
side of (3.1) in terms of its principal value, we obtain an integral equation for the
interfacial velocity,

uj(x0) = u∞j (x0)− 1

2πµ

∫
C

fi(x)Gij(x, x0) dl(x)

+
1

2π

∫ PV

C

ui(x)Tijk(x, x0)nk(x) dl(x), (3.5)

where PV denotes the principal value. Previous authors have shown that the corre-
sponding homogeneous equation

ψj(x0) =
1

2π

∫ PV

C

ψi(x)Tijk(x, x0)nk(x) dl(x) (3.6)

admits a non-trivial eigensolution ψ that expresses the interfacial velocity established
when the bubble expands or shrinks at an arbitrary rate due to a high or low internal
pressure in the absence of surface tension (e.g. Pozrikidis 1992). The corresponding
eigensolution of the adjoint equation

φj(x0) =
1

2π

∫ PV

C

φi(x)Tjik(x0, x)nk(x0) dl(x) (3.7)
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is the normal vector, φi = ni. Consequently, the integral equation (3.5) has a one-
parameter family of solutions.

One way to remove the non-uniqueness of solution of the integral equation is to
specify that the bubble area changes in time at a stipulated rate Q, and then add the
term

zj(x0)

[∫
C

ui(x)ni(x) dl(x)− Q
]

(3.8)

to the right-hand side of (3.5), where z is an arbitrary function required to be non-
orthogonal to φi,

∫
C
zini dl 6= 0; an example is zi = φi = ni. With this addition, the

integral equation has a unique solution that satisfies the constraint (2.4). Since the
introduction of the term (3.8) shifts the unit-norm eigenvalue of the double-layer
potential, this method can be described as deflation.

Another way of removing the non-uniqueness of solution of the integral equation
(3.5) originates from the solvability condition. In numerical practice, the integral
equation is transformed into a linear system of algebraic equations of the form

z = A · z + b, (3.9)

using, for example, a collocation or a Galerkin method. In the collocation method, the
vector z contains the x- and y-components of the velocity at the free-surface nodes.
The components of the matrix A are defined in terms of the double-layer potential
defined over boundary elements, and the vector b incorporates the first two terms on
the right-hand side of (3.5). The occurrence of the eigensolution ψi suggests that the
matrix I − A is nearly singular, and the condition number increases as the numerical
error is made smaller.

Now, the solvability condition for (3.5) requires that the sum of the first two terms
on the right-hand side be orthogonal to the eigenfunction of the adjoint, φi = ni;
that is, the integral of their product over C should vanish. In the discretized version
of the problem expressed by (3.9), this integral is represented by the inner product
of the vector b and a vector w whose elements are defined in terms of integration
weights that depend on the particular method selected for carrying out the integration.
Because of discretization and integration error, the inner product b · w will not be
equal to zero to machine precision.

To ensure that the linear system shares the properties of its ancestral integral
equation regarding uniqueness of solution and solvability, we project both sides of
(3.9) onto the space that is orthogonal to w, thereby obtaining the singular system

B · z = c, (3.10)

where B ≡ P·(I−A), c ≡ P·b, and the matrix P ≡ I−ww/|w|2 carries out the projection.
Clearly, the vector w is an eigenvector of the transpose of B corresponding to the
zero eigenvalue, the solvability condition w ·c = 0 is fulfilled to machine precision, the
coefficient matrix of the linear system (3.10) is rank-one deficient, and the system has
a one-parameter family of solutions. One of the components of the unknown vector z
may then be assigned an arbitrary value, and one equation of the linear system may
be discarded and replaced by a constraint on the rate of expansion expressed by a
discrete form of (2.4).

The two methods of solving the integral equation subject to a specified rate of
expansion, based on deflation or projection, were implemented using a standard
collocation method. The numerical procedure involves the following steps: (a) the
free surface is traced with a set of Lagrangian marker points or nodes, and the shape
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of the free surface between two successive nodes is interpolated with blended circular
arcs; (b) the velocity components along the free surface between two successive nodes
are approximated with linear functions with respect to arc length; (c) the integral
equation is applied at the nodes to yield a system of linear equations for the node
velocities; (d) the linear system is solved by the method of Gauss elimination; (d)
the position of the marker points is advanced in time using the second-order Runge–
Kutta method with a constant time step. After a time step has been completed, the
marker points are redistributed adaptively to ensure adequate spatial resolution and
capture the development of regions of high curvature.

To compare the performance of the two methods, we consider the velocity along the
free surface of an elliptical bubble with axes ratio 2 : 1, expanding at a specified rate
Q in the absence of surface tension. Using the numerical method based on deflation,
we find that the x-component of the free-surface velocity at a point on the x-axis is
given by uxa/Q = 0.0899, 0.0900 and 0.0900, respectively, for 32, 64, and 128 marker
points, where a is the equivalent bubble radius. The corresponding velocity obtained
with the projection method is 0.0902, 0.0901, 0.0900. This comparison suggests that
the two methods are comparable in accuracy, with the first method having a slight
but likely fortuitous advantage.

3.2. Computation of the bubble pressure

Suppose that the interfacial velocity field has been obtained using the numerical
methods discussed in § 3.1. To compute the bubble pressure, we use the normal
component of the interfacial force balance expressed by equation (2.3) evaluated at a
point at the free surface. Decomposing the normal stress into its pressure and viscous
components, and using the continuity equation to express the viscous component in
terms of the tangential derivative of the tangential velocity, we obtain

pB = p+ 2µ
∂u

∂l
· t + γκ, (3.11)

where t is the unit vector tangent to C pointing in the direction of increasing arc
length l, as illustrated in figure 1. The second term on the right-hand side of (3.11)
may be computed readily from knowledge of the interfacial velocity by numerical
differentiation.

To evaluate the pressure at the free surface on the side of the liquid, we consider
the limit of the right-hand side of the integral representation (3.3) as the point x0

approaches the free surface C . In this limit, the two integrals on the right-hand side
become improper, exhibiting, respectively, a 1/r and an apparent 1/r2 singularity, as
displayed in expressions (3.4). The former is classified as a principal-value integral,
and the latter as a hypersingular integral. To compute the limiting values of these
integrals, we first reduce the order of the singularities by substituting the interfacial
condition (2.2) into the first integral on the right-hand side of (3.3), and then using
integral identities to find that, in the limit as x0 tends to the bubble contour C , the
pressure is given by

p(x0) = p∞(x0)− γ

4π

∫
C

ni(x)Pi(x0, x)[κ(x)− κ(x0)] dl(x)

+
µ

4π

∫
C

[ui(x)− ui(x0)]Πik(x0, x)nk(x) dl(x). (3.12)

The order of the singularity has been reduced by one unit in both integrals.
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Inspection of the free-space pressure kernel Pi given in (3.4a) shows that the
kernel of the first integral on the right-hand side of (3.12) remains regular as the
evaluation point x0 approaches and then crosses the domain of integration C . When,
in particular, x0 is located on C , as the integration point x tends to the evaluation
point x0, the distance x̂ tends to become perpendicular to the normal vector n, the
product ni(x)Pi(x0, x) tends to a finite limit, and the first integrand in (3.12) tends to
vanish.

The computation of the second integral on the right-hand side of (3.12) is more
subtle. Substituting into the integrand the free-space kernel given in (3.4b), and
decomposing the integral into two parts, we obtain∫

C

[ui(x)− ui(x0)]Πik(x0, x)nk(x) dl(x) = −4

∫
C

[ui(x)− ui(x0)]
ni(x)

r2
dl(x)

+8

∫
C

[ui(x)− ui(x0)]
x̂ix̂k

r4
nk(x) dl(x). (3.13)

To compute the first integral on the right-hand side of (3.13) in the limit as the
evaluation point x0 approaches C , we consider the projection of x0 onto C , denoted
by x′0, as illustrated in figure 1. Using Taylor series expansions, we write

ui(x0) = ui(x
′
0) +

(
∂ui

∂ln

)
x′0

δ + · · · , (3.14)

where ln is the arc length measured in the direction of the normal vector n, and
δ = |x0 − x′0|. Considering also a point x that lies on C in the vicinity of the
free-surface point x′0, we write the analogous expansion

ui(x) = ui(x
′
0) +

(
∂ui

∂l

)
x′0

(l − l′0) + · · · , (3.15)

where l is the arc length along C measured in the direction of the tangent vector t,
and l′0 ≡ l(x′0). Substituting (3.14) and (3.15) into the first integral on the right-hand
side of (3.13), we express it in the form

−4

(
∂ui

∂l

)
x′0

ni(x
′
0)

∫
C

l − l′0
δ2 + (l − l′0)2

dl(x)

+4

(
∂ui

∂ln

)
x′0

ni(x
′
0)

∫
C

δ

δ2 + (l − l′0)2
dl(x) + · · · , (3.16)

where the dots represent contributions that are finite and continuous throughout the
domain of flow. In the limit as δ tends to zero, the first integral of (3.16) becomes a
Cauchy principal-value integral, and the second integral tends to the finite value of π.

Turning now to the second integral on the right-hand side of (3.13), we express it
in the form

8

∫
C

[
ui(x)− ui(x0)−

(
∂ui

∂xj

)
x′0

x̂j

]
x̂ix̂k

r4
nk(x) dl(x)

−2

(
∂ui

∂xj

)
x′0

∫
C

[
−4

x̂ix̂j x̂k

r4

]
nk(x) dl(x). (3.17)

Because the first integrand is non-singular, the corresponding integral remains con-
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tinuous as the evaluation point x0 approaches and then crosses C . Identifying the
integrand of the second integral with the stress Green’s function Tijk given in (3.2b),
using the integral identity

∫
C
Tijknk dl = 0 when x0 is exterior to C , or − 1

2
δij when x0

is on C , and invoking the continuity equation to set ∂ui/∂xi = 0, we conclude that, in
the limit as x0 tends to C , the second integral on the right-hand side of (3.13) tends to
the value of the integral computed when x0 lies on C . We note, once again, that, when
x0 is on C , as the integration point x tends to the evaluation point x0 the distance
x̂ ≡ x− x0 tends to become perpendicular to the normal vector n, and find that the
integrand is non-singular and may be evaluated using a standard numerical method.
Similar results are obtained by analysing the behaviour of the second integral on the
right-hand side of (3.13) in terms of the expansions (3.14) and (3.15).

Combining the preceding results, and using the continuity equation to write
(∂ui/∂ln)ni = −(∂ui/∂l)ti, we find that the pressure at the point x0 that lies at the free
surface on the side of the liquid is given by the regularized integral representation

p(x0) = p∞(x0) +
γ

2π

∫
C

ni(x)
xi − x0i

r2
[κ(x)− κ(x0)] dl(x)

+
2µ

π

∫
C

[ui(x)− ui(x0)]
x̂ix̂k

r4
nk(x) dl(x)

−µ
π

∫ PV

C

[ui(x)− ui(x0)]
ni(x)

r2
dl(x)− µ

(
∂ui

∂l

)
(x0)ti(x0), (3.18)

where x0 is on C . The first two integrals on the right-hand side of (3.18) are non-
singular, and the third integral is a Cauchy principal-value integral. The last term
on the right-hand side of (3.18) may be computed from knowledge of the interfacial
velocity by numerical differentiation.

To compute the Cauchy principal-value integral on the right-hand side of (3.18)
when the evaluation point x0 is the jth node, we approximate the section of the
free-surface between the marker points numbered j − 1 and j + 1 with a circular arc
of radius aj passing through these two points and through the intermediate jth point,
as illustrated in figure 1. We then regard the Cartesian components of the velocity
over the jth arc as functions of the polar angle θ measured in the counterclockwise
direction around the arc centre, describe them by parabolic interpolation, and recast
the Cauchy principal-value integral over the jth arc into the form∫

Aj

[
[ui(x)− ui(x0)]

ni(x)

r2
−
(
∂ui

∂θ

)
θj

(θ − θj) ni(x0)

a2
j (θ − θj)2

]
dl(x)

± 1

aj

(
∂ui

∂θ

)
θj

ni(x0)

∫ PV

Aj

dθ

θ − θj , (3.19)

where Aj stands for the jth arc, and the plus or minus sign in the last term applies,
respectively, when the arc is traced in the counterclockwise or clockwise direction with
respect to the distribution of the marker points. The first integral on the right-hand
side of (3.19) is non-singular. The second principal-value integral may be computed
by elementary analytical methods.

To assess the performance of the numerical method for evaluating the pressure, we
used the integral representation (3.18) in conjunction with the boundary condition
(3.11) to evaluate the bubble pressure at marker points distributed around the free
surface of an elliptical bubble with axes ratio 2 : 1, where the bubble is shrinking



180 C. Pozrikidis

–0.254

–0.255

–0.256

–0.257

–0.258

–0.259

–0.260
–1.0 –0.5 0 0.5 1.0

x/b

D p̂B

128

64

32

Figure 2. Distribution of the bubble pressure around the free surface of a shrinking elliptical bubble
with axes ratio 2 : 1 computed from the integral representation (3.12) for several discretization levels.

at the specified areal rate Q. Figure 2 shows the distribution of the reduced bubble
pressure ∆p̂B ≡ (pB − p∞)a2/(µ|Q|) around half the free surface plotted against x/b,
computed with 32, 64, and 128 marker points; a is the equivalent bubble radius, and
b is the major semi-axis of the ellipse along the x-axis. In the absence of numerical
error, the distribution of the bubble pressure should be uniform and independent of
the evaluation point.

The numerical results displayed in figure 2 suggest that the bubble pressure con-
verges at a linear rate with respect to the number of marker points. For 128 points,
the maximum numerical error is estimated to be less than 1% of the exact value.
This amount of error was also confirmed by comparing numerical with exact values,
as will be discussed in subsequent sections. In view of well-known difficulties in
evaluating hypersingular integrals (e.g. Sladek & Sladek 1998), a numerical error of
this order is satisfactory. In the results presented in the remainder of this paper, the
bubble pressure was computed as the average of the pointwise pressure evaluated at
all marker points.

3.3. Computation of the rate of expansion

The linearity of the governing equations of Stokes flow with respect to velocity and
pressure suggests that, at any instant, the bubble pressure is a linear function of the
rate of expansion Q, and may thus be expressed in the form

pB(Q) = pB(Q = 0) + αQ, (3.20)

where α is a proportionality coefficient dependent on the instantaneous bubble shape.
If the bubble pressure is specified and α is known, equation (3.20) may be used
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Figure 3. (a) Shrinkage of an elliptical bubble with initial axes ratio 2 : 1 at a specified negative
rate of expansion Q in the absence of surface tension; free-surface profiles at dimensionless times
t̂ ≡ t|Q|/a2

0 = 0, 0.20, 0.40, . . . , where a0 is the initial equivalent radius. (b) Evolution of the bubble

area reduced by the initial value, ÂB (solid line), reduced major axis b̂ ≡ b/a0 (dotted line), reduced
minor axis ĉ ≡ c/a0 (dashed line), and relative bubble pressure ∆p̂B ≡ (pB − p∞)a2

0/(µ|Q|) (long
dashed line).

to compute the rate of expansion. In the numerical implementation, the coefficient
α was computed by the method of impulses based on the equation α = pB(Q =
1) − pB(Q = 0), where the bubble pressure is evaluated using the numerical method
discussed in § 3.2. The rate of expansion was subsequently determined from the
equation Q = (pB − pB(Q = 0))/α.

4. Shrinkage of an elliptical bubble
Tanveer & Vasconcelos (1995) combined the complex-variable formulation of

Stokes flow with conformal mapping to study the evolution of a two-dimensional
bubble expanding or shrinking, respectively, at a specified positive or negative rate
of expansion Q. Their results showed that expansion tends to restore the circular
shape even in the absence of surface tension, whereas shrinkage may lead to the
spontaneous formation of near-cusps at the free surface for a certain class of initial
shapes. As a first case study, we consider the evolution of an initially elliptical bubble
shrinking at a constant negative rate of expansion, compare the numerical results
with the predictions of Tanveer & Vasconcelos (1995), and discuss the behaviour of
the bubble pressure during the contraction.

Figure 3(a) shows successive stages in the evolution of the free surface of an elliptical
bubble with initial axes ratio 2 : 1 in the absence of surface tension, simulated with 128
marker points around the interface. The numerical results are in excellent agreement
with the predictions of Tanveer & Vasconcelos (1995): the bubble shrinks while
maintaining an elliptical shape whose eccentricity increases monotonically in time.
The solid line in figure 3(b) shows the evolution of the bubble area reduced by the
initial value, plotted with respect to reduced time t̂ ≡ t/tcr , where tcr = πa2

0/|Q| is the
critical time when the bubble disappears, and a0 is the initial equivalent radius. The
dotted and dashed lines illustrate the evolution of the major and minor axis of the
elliptical interface, denoted by b and c, reduced by the initial equivalent bubble radius
a0. Tanveer & Vasconcellor (1995) predict that, at the critical time when the bubble

disappears, the major axis b tends to the asymptotic value
√
b2

0 − c2
0 =

√
1.5a0 =
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Figure 4. (a) Evolution of the relative bubble pressure during the shrinkage of an elliptical bubble
with initial axes ratio 2 : 1 for initial capillary numbers Ca0 ≡ µ|Q|/(a0γ) = ∞, 10, 5, 2, and 1.
(b) Evolution of the minor bubble axis c plotted with respect to shifted time tcr − t on a log-log
scale.

1.225a0, while the minor axis tends to vanish, yielding an elongated bubble in the
form of a narrow slit; the subscript 0 indicates the initial value. Our numerical results
reproduce this behaviour and recover the asymptotic value of the major axis at the
critical time accurate to the third significant figure.

The long-dashed line near the bottom of figure 3(b) shows the evolution of the
reduced bubble pressure ∆p̂B ≡ (pB − p∞)a2

0/(µ|Q|). The results reveal that the bubble
pressure is less than the pressure at infinity, as required on physical grounds for the
bubble to shrink in the absence of surface tension. Moreover, the results suggest that,
as time approaches the critical time where the bubble disappears, ∆p̂B passes through
a minimum and then it increases toward the value of zero. In contrast, the pressure
inside a perfectly circular bubble of radius a(t) shrinking at a constant negative rate
Q is given by pB = p∞ − µ|Q|/(πa2) + γ/a. No matter how large the surface tension
and associated capillary pressure, viscous stresses cause the bubble pressure to tend
to negative infinity at the critical time where the bubble disappears.

In the absence of surface tension, and only then, the evolution of the free surface is
independent of the functional form of the rate of expansion Q(t), which merely serves
to determine the rate by which the free surface passes through a continuous family
of elliptical shapes. Tanveer & Vasconcelos (1995) predict that surface tension does
not have a profound effect on the nature of the motion of the elliptical bubble, and
its main effect is to modify the length of the slit-like bubble at the critical time where
the bubble disappears. The results of our simulations corroborate these predictions.
To illustrate the effect of surface tension on the bubble pressure, in figure 4(a) we
display the evolution of the pressure difference ∆p̂B for initial capillary numbers
Ca0 ≡ µ|Q|/(a0γ) = ∞, 10, 5, 2, and 1. The results suggest that infinite capillary
number is a special case: when the surface tension is non-zero, the bubble pressure
tends to negative infinity at the critical time. Physically, the singular behaviour is
attributed to strong viscous stresses developing at the tip of the shrinking ellipse
during the final stages of collapse.

Because the capillary pressure over the flat side of a highly eccentric elliptical bubble
is negligible, the singular bubble pressure developing in the presence of surface tension,
illustrated in figure 4(a), must be balanced by the viscous normal stress. We note
that the viscous stress over the flat side of the bubble scales with the y-component
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of the velocity evaluated at the free surface, denoted by v, and this requires that,
near the critical time when the bubble disappears, v should diverge, and the upper
and lower sides of the slit-like bubble will slam against each other at infinite speed.
This behaviour is supported by the results presented in figure 4(b), illustrating the
evolution of the bubble minor axes c with respect to shifted time tcr − t, plotted on a
log-log scale for several capillary numbers. The results suggest the power-law relation
c ≡ (tcr − t)β , where β is close unity for infinite capillary number corresponding to
zero surface tension, and less than unity for finite capillary numbers. We note that
dc/dt = v, and this confirms the aforementioned singular behaviour in the presence
of surface tension.

5. A bubble in simple shear flow
In the second case study, we consider the deformation of a bubble suspended in an

ambient liquid of infinite expanse undergoing simple shear flow along the x-axis. Far
from the bubble, the velocity is given by u∞ = (ky, 0), where k is the shear rate, and
the pressure is uniform. Richardson (1968) showed that it is possible for the bubble to
deform and assume a steady shape, no matter how high the shear rate or how small
the surface tension; that is, no matter how large the capillary number. The deformed
shape is perfectly elliptical with major axis inclined with respect to the direction of
the shear flow by a certain angle.

In the absence of fluid motion, the bubble has a circular shape, and the bubble
pressure is given by the Young–Laplace law pB0

= p∞+ γ/a0, where p∞ is the pressure
outside the bubble, and a0 is the bubble radius. Fluid motion causes the bubble
pressure to change by an amount that depends on the shear rate, and the bubble area
to undergo a corresponding change determined by an equation of state appropriate
for the gas occupying the bubble. When the bubble has deformed and reached a steady
state, the bubble pressure pBs and area As, where the subscript s denotes the steady
state, are different from the initial values pB0

and A0 = πa2
0. The change in bubble

pressure δpB ≡ pBs − pB0
, the corresponding change in the bubble area δAB ≡ As−A0,

and the bubble deformation and inclination at steady state, are all functions of the
a priori unknown capillary number at steady state Cas = µkas/γ, and thus depend
on the initial capillary number Cao = µka0/γ and on the bubble gas equation of
state.

Richardson (1968) provided analytical expressions for the bubble axes ratio, orien-
tation, and pressure at steady state. The deformation parameter D ≡ (A−B)/(A+B),
where A and B are the major and minor axes of the deformed elliptical shape, satisfies
the nonlinear algebraic equation

Cas − 2

π
DF(D) = 0, (5.1)

where F is the complete elliptic integral of the first kind. The bubble inclination angle
φ is related to the deformation parameter by the equation D = cos(2φ), and the

reduced bubble pressure ∆p̂Bs ≡ (pBs − p∞)/(µk) is given by ∆p̂Bs =
√

1− D2/D. As
the capillary number is raised, the deformation parameter D tends to unity, and ∆p̂Bs
tends to vanish.

In figure 5, we plot with the solid, dotted, and dashed line, respectively, D, φ, and the
incremental change in the reduced bubble pressure defined as δp̂B ≡ (pBs−pB0

)/(µk) =
∆p̂Bs − 1/Cas, against the capillary number Cas. The circle represents the results of a
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Figure 5. A bubble in simple shear flow; graphs of the Taylor deformation parameter D (solid
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the capillary number at steady state.
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Figure 6. (a) Stages in the deformation of an incompressible bubble in simple shear flow, for
capillary number Ca0 = Cas = µka/γ = 2.0; (b) corresponding evolution of the change in the
bubble pressure expressed by δp̂B .

numerical simulation to be discussed later in this section. The dashed line in figure 5
suggests that the shear flow causes a reduction in the bubble pressure. Consequently,
the bubble is expected to expand as it deforms to obtain the steady elliptical shape.
Figure 5 may be used to compute the a priori unknown capillary number Cas, and
thus the size and shape of the bubble at steady state, using an iterative method
according to the following steps: assume that Cas = Ca0, that is, the bubble area does
not change due to the flow; read from figure 5 the corresponding bubble pressure;
compute the bubble area from the bubble pressure using an appropriate equation of
state for the gas occupying the bubble; recompute Cas based on the improved bubble
area; repeat until convergence.

Tanveer & Vasconcelos (1995) showed that the transient deformation of an in-
compressible circular bubble occurs through a sequence of evolving elliptical shapes,
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and derived a system of ordinary differential equations governing the evolution of
the bubble axes ratio and orientation. Because of the constraint of constant area,
the bubble pressure changes during the deformation. Figure 6(a) shows a sequence
of stages in the deformation of an incompressible bubble for capillary number
Ca0 = Cas = µka0/γ = 0.5, computed using the boundary integral method, and
figure 6(b) shows the evolution of the incremental bubble pressure expressed by δp̂B ,
computed using the numerical method discussed in § 3.2. The results show that the
change in the bubble pressure is positive during the initial period of deformation,
indicating that the bubble will shrink. The pressure then passes through a maximum,
and finally becomes negative and tends to the asymptotic value represented by the
circle in figure 5, indicating that the bubble will undergo a net expansion at steady
state.

To confirm these predictions, we carried out a series of simulations on the transient
deformation of a compressible bubble, where the evolution of the bubble area is
determined from the bubble pressure according to the equation of state for an ideal
gas under isothermal conditions, as discussed in § 2. The deformation of the bubble
is a function of the initial capillary number Ca0 = µka0/γ and of the bubble pressure
at the initial instant determined by the reduced pressure at infinity p̂∞ = p∞a0/γ; in
terms of p̂∞, the initial bubble pressure is given by pB0

= a0(1 + p̂∞)/γ. For a circular
air bubble of radius 1 mm suspended in a liquid at atmospheric pressure, p̂∞ is on the
order of 103.

Figure 7(a) shows the evolution of the bubble area reduced by the initial area,
ÂB ≡ AB/AB0

, for Ca0 = 0.5 and p̂∞ = 1, 2, 5, and 8. The results confirm that the
bubble initially shrinks and then expands to occupy an area that is larger than the
initial value. The asymptotic increase in the bubble size is inversely proportional to
the initial bubble pressure. For p̂∞= 1, the bubble area at steady state is higher by
4% than the initial value; correspondingly, the capillary number at steady state is
larger by 2% than the initial value. Although noticeable, this increase is not large
enough for the compressibility of the bubble to have a significant effect on the overall
bubble behaviour. Figure 7(b) shows the evolution of the reduced rate of expansion
Q̂ ≡ Q/(ka2

0), suggesting that the rate of expansion decays to zero at a seemingly
exponential rate at long times.
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6. A bubble in purely straining flow
In the third case study, we consider the deformation of a bubble subject to a purely

straining flow. Far from the bubble, the velocity field is given by u∞ = (kx,−ky),
where k is the rate of extension, and the pressure is uniform. Richardson (1968)
demonstrated the existence of a critical value of the steady-state capillary number,
Cas = µkas/γ, approximately equal to 0.305, above which a steady shape cannot be
found. Below this critical value, the bubble may assume one of two possible elliptical
shapes. The shape with the higher aspect ratio is unstable and may not be realized
in practice.

Richardson (1968) provided analytical expressions for the Taylor deformation
parameter, D, and reduced bubble pressure ∆p̂Bs ≡ (pBs − p∞)/(µk), at steady state.
The former satisfies the algebraic equation

Cas − 1

π
D
√

1− D2F(D) = 0, (6.1)

where F is the complete elliptic integral of the first kind, and the latter is given
by ∆p̂Bs = 2/D. In figure 8, we plot with the solid and dashed line, respectively,
D and the flow-induced change in the reduced bubble pressure defined as δp̂B ≡
(pBs − pB0

)/(µk) = δp̂Bs − 1/Cas, against the capillary number Cas in the regime
where steady shapes can be found. The upper branch of the deformation parameter
graph and the lower branch of the pressure graph above or below the turning points
correspond to the unstable highly eccentric elongated shapes.

Tanveer & Vasconcelos (1995) showed that, as in the case of simple shear flow,
the transient deformation of an incompressible circular bubble occurs through a
sequence of elliptical shapes, and derived an ordinary differential equation governing
the evolution of the bubble axes ratio. Because of the constraint of constant bubble
area, the bubble pressure changes during the deformation according to an equation
of state. Figure 9(a) shows a sequence of stages in the deformation of a bubble under
constant area, for capillary number Ca0 = Cas = 0.300 computed using the boundary
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Figure 9. (a) Stages in the deformation of an incompressible bubble in purely elongational flow,
for capillary number Ca0 = Cas = µka/γ = 0.3; (b) corresponding evolution of the deformation
parameter (solid line) and change in bubble pressure (dotted line).

integral method, corresponding to the vertical dotted line in figure 8. Figure 9(b)
displays the evolution of the deformation parameter (solid line) and change in bubble
pressure expressed by δp̂B (dotted line). The deformation of the free surface leads to a
stationary shape corresponding to the lower branch of the deformation graph shown
in figure 8. The evolution of the bubble pressure is similar to that described in § 5 for
a bubble in simple shear flow, suggesting that a compressible bubble is expected to
expand when it reaches the steady state.

This prediction is corroborated by numerical simulations. Figure 10 shows the
evolution of the deformation parameter (solid line), reduced bubble area shifted by
one unit (dashed line), and reduced rate of expansion (dotted line), for Ca0 = 0.300
and p̂∞ = 1. By the end of the simulation, the bubble has expanded by nearly 5%, and
this has raised the capillary number barely outside the regime where steady shapes
can be found. In this extreme case, the expansion of the bubble has a destabilizing
influence on the deformation.

7. Discussion
We have studied the behaviour of the bubble pressure and the effect of bubble com-

pressibility in three complementary types of two-dimensional Stokes flow: shrinkage,
shearing, and pure deformation. The results have shown that a bubble may contract
or expand due to ambient fluid motion. In the case of shear and elongational flow,
the bubble expands by a small percentage when it reaches a steady state, but the
effect is significant only when the ambient pressure is less than, or comparable with,
the capillary pressure due to surface tension.

Consideration of the two-dimensional flow was necessitated by the availability of
numerical methods for computing the bubble pressure in terms of strongly singular
integrals originating from the boundary-integral representation. Numerical methods
for evaluating with sufficient accuracy analogous integrals in the more realistic case
of three-dimensional flow are not available. Similarities in the structure of viscous
flow past two- or three-dimensional drops and bubbles noted by previous authors,
however, suggest that three-dimensional compressible bubbles are also expected to
expand when subjected to an ambient shear or elongational flow. Earlier studies have
shown that three-dimensional bubbles suspended in simple shear flow are unable to
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obtain a stationary shape when the capillary number exceeds a critical threshold
(e.g. Kennedy, Pozrikidis & Skalak 1994), whereas two-dimensional bubbles obtain
stationary shapes at all capillary numbers (Richardson 1968), as discussed in § 4. The
difference may be attributed to the Rayleigh capillary instability that destabilizes
elongated three-dimensional shapes. In the case of three-dimensional shear flow, flow-
induced expansion may raise the capillary number above the critical threshold and
thus destabilize the free surface.

Consider the shear or elongational flow of a dilute suspension of compressible
bubbles with a position-dependent shear rate or rate of expansion. In the absence
of a constraint on the total volume of the suspension, the individual bubble volume
and thus the bubble volume fraction is expected to develop spatial non-uniformities
due to the uneven expansion of the bubbles, especially in regions of low pressure.
In the case of internal flow occurring, for example, in a cavity or closed channel
confined on all sides by rigid walls, bubble expansion is prohibited by the constraint
of constant total flow volume, and the pressure in the liquid far from the bubble
must increase or decrease so that the bubble volume and pressure remain constant
and the rate of expansion vanishes during the deformation. Consequently, the liquid
pressure in a cone-and-plate viscometer filled with a Newtonian liquid that contains
bubbles is expected to increase by a small amount on raising the shear rate. This
uniform increase contributes an osmotic-like pressure to the effective stress tensor of
the suspension, and affects the normal stress differences indirectly through changes in
the capillary number defined with respect to the bubble size at steady state.

This research was supported by a grant provided by the National Science Foun-
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